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Modeling of spiking-bursting neural behavior using two-dimensional map
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A simple model that replicates the dynamics of spiking and spiking-bursting activity of real biological
neurons is proposed. The model is a two-dimensional map that contains one fast and one slow variable. The
mechanisms behind generation of spikes, bursts of spikes, and restructuring of the map behavior are explained
using phase portrait analysis. The dynamics of two coupled maps that model the behavior of two electrically
coupled neurons is discussed. Synchronization regimes for spiking and bursting activities of these maps are
studied as a function of coupling strength. It is demonstrated that the results of this model are in agreement
with the synchronization of chaotic spiking-bursting behavior experimentally found in real biological neurons.

DOI: 10.1103/PhysRevE.65.041922 PACS nunier87.17~d, 05.45-a

I. INTRODUCTION map. Despite the low-dimensional phase space of this non-
linear map, it is able to demonstrate a large variety of com-
Understanding dynamical principles and mechanisms beplex dynamical regimes.
hind the control of activity, signal and information process- The use of low-dimensional model maps can be useful for
ings that occur in neurobiological networks is hardly pos-understanding the dynamical mechanisms if they mimic the
sible without numerical studies of collective dynamics of dynamics of oscillations observed in real neurons, show cor-
large networks of neurons. These simulations need to takéct restructuring of collective behavior, and are simple
into account the complex architecture of couplings amongnough to study the reasons behind such restructuring. The
individual neurons, which is suggested by data from biologi-development of a model map that is capable of describing
cal experiments. One of the complicating factors in undervarious types of neural activities, including generation of
standing the simulation results is the complexity of temporafonic spikes, irregular spiking, and both regular and irregular
behavior of individual biological neurons. This complexity is bursts of spikes, is the goal of this paper.
due to the large number of ionic currents involved in the It is known that while constructing a low-dimensional
nonlinear dynamics of neurons. As a result, realistic channesystem of differential equations, which is capable of gener-
based models proposed for a single neuron is usually a syating fast spikes bursts excited on top of the slow oscilla-
tem of many nonlinear differential equatiofsee, for ex- tions, one needs to consider a system that has both slow and
ample, Refs[1-5] and the review of the models in R¢6]).  fast dynamics(see, for example, Ref$7-11]). Using the
The strong nonlinearity and high dimensionality of the phasés@me approach one can construct a two-dimensional map,
space is a significant obstacle in understanding the collectiv&hich can be written in the form
behavior of such dynamical systems. The dynamical mecha-
nisms responsible for restructuring collective behavior of a Xn+1=T(Xn,Ynt Bn), (1a
network of channel-based neuron models are difficult or im-
possible to analyze because these mechanisms are well hid-
den behind the complexity of the equations. If there is a
chance to identify possible dynamical mechanisms behind a
particular behavior of the network without the use of com-wherex, is the fast andy, is the slow dynamical variable.
plex models, then this knowledge can be used to guid&low time evolution ofy, is due to small values of the pa-
through numerical study of this behavior with the high- rameteru=0.001. Terms3, and o, describe external influ-
dimensional channel-based models. Based on these resuftces applied to the map. These terms model the dynamics
one can specify the actual dynamical mechanism that ocf the neuron under the action of the external dc bias current
curred in the network and understand the biological prod 4. and synaptic inputs)’". The termo, can also be used as
cesses that contribute to it. the control parameter to select the regime of individual be-
One way to reveal the dynamical mechanisms is to use havior.

simplified or phenomenological model of the neuron. How- A model in the form of a two-dimensional map, whose
ever, many experiments indicate that the restructuring of colform is similar to Eq.(1) was used in the study of dynamical
lective behavior utilizes a variety of dynamical regimes gen-mechanisms behind the emergence and regularization of cha-
erated by individual dynamics of a neuron. When neuralotic bursts in a group of synchronously bursting cells
dynamics include the regime chaotic spiking-bursting oscil-coupled through a mean fiefd2,13. The effect of antiphase
lations the system of differential equations describing eachiegularization was also modeled before with one-
neuron should be at least a three-dimensidB&l) system dimensional mapgl4]. In both these models the oscillations
(see, for example, Ref7]). Further simplification of phe- during the burst were described by a chaotic trajectory. Map
nomenological models for complex dynamics of the neuron1l) improves these models by adding a feature that enables
can be obtained using dynamical systems in the form of @ne to mimic the dynamics of individual spikes within the

Ynr1=Yn— #(Xpt1)+uoy,, (1b)
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FIG. 1. The shape .of the nonll_near functlp(x,y), plotted for_ 1000 1500 20‘00

a=6.0 andy=—3.93, is shown with a solid line. The dashed line n

illustrates a superstable cycR, of the fast map(3a), where the

value ofy is fixed. The stable and unstable fixed points of the map FIG. 2. Wave forms of spiking behavior generated by n@jp

are indicated by, andx,,, respectively. with «=4. Figure 2a) shows the transition to the regime of silence
for 0=—0.01. The regimes of continuous tonic spiking are com-

burst. This is achieved using a modification of the shape oputed foro=0.01(b) ando=0.1(c).

the nonlinear functiorf(x,y) that is now a discontinuous

function of the form of the map depends only on the control parametesd o,
and the map can be rewritten in the form
al(l-x)+y, x<0
fxy)= a+y, 0<x<a+y @ Xpr1=F(Xn,Yn), (3@
-1 X=aty, Yn+1=Yn— u(Xgt+ 1)+ puo. (3b)

wherea is a control parameter of the map. The dependencgyp'cal regimes of temporal behavior of the map are shown

of f(x,y) on x computed for a fixed value of is shown in In Figs. 2 and 3. When the value af is less than 4.0 then,
Fig. 1. In this plot the values of andy are set to illustrate dePending on the value of parameter the map generates

the possibility of coexistence of limit cycle,, correspond- spikes_or st_ays in a steady stasee Fig. 2 The f_re_quency of
ing to spiking oscillation in Eq(1a), and fixed points, and the spikes increases as the value of parameterincreased

Xpu- Note that whery increases or decreases the graph Of(see Fig. 2
f(x,y) moves up or down, respectively, except for the third

interval x=a+y, where the values df(x,y) always remain 27 () 1
equal to—1. < 1 ]
The paper is organized as follows: Sec. Il considers the = 0 } 1
features of the fast and slow dynamics, which explain the -1 AR
formation of various types of behavior in the isolated map. It =27
also discusses the bifurcations responsible for the qualitative 2
change of activity. The dynamics of response generated by o 1 W
the map after it is excited or inhibited by an external pulse is = ot}
discussed in Sec. Ill. The goal of this section is to illustrate -1 WMLWM
dynamical mechanisms that control the response, and to =2 f
show how the relation between the two inputs of the map g
influence the properties of the response. Section IV presents < 1 “Mkwwwmm MMWWWMW*
the results of a synchronization study in two coupled maps. =0
-
II. INDIVIDUAL DYNAMICS OF THE MAP 2 1000 1500 2000
n

Consider the regimes of oscillations produced by the in-

dividual dynamics of the map. In this case the inpgts FIG. 3. Typical wave forms of the spiking-bursting behavior
=p ando,=o are constants. Note that # is a constant, generated by the ma(8) for the following parameter valuest
then it can be omitted from the equations using the change o£4.5, 5=0.14 (3); «=6.0, o¢=-0.1 (b); and a=6.0, o

variabley,+ 8—y;®". Therefore, the individual dynamics =0.386(c).
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FIG. 4. Stablg Sy4(Y),Sspiked and unstabléS, (y)] branches of slow dynamics of EB) plotted on the plane of phase variablgsx).
The cases ofr=4 anda=6 are presented i@ and(b), respectively. Numbers on the brangf.sstand for the value dk of the cycles

P. The operating points OP’s are selected to illustrate the regime of siler(e® amd the regime of spiking-bursting oscillations(ln).
Arrows indicate the direction of slow evolution along the branches, and switching in the cése of

For a>4 the map dynamics are capable of producing To understand the dynamics of excited neurons within this
bursts of spikes. The spiking-bursting regimes are found irmodel one needs to consider branches that correspond to the
the intermediate region of parameterbetween the regimes spiking regime. To evaluate the location of the spiking
of continuous tonic spiking and steady stasdencg. The  branches, consider the mean valuexgfcomputed for the
spiking-bursting regimes include both periodic and chaotigeriodic trajectory of the fast maf8a) as a function ofy.
burstings. A few typical bursting-spiking regimes computedHerey is treated as a parameter. Use of such an approxima-
for different values ofr are presented in Fig. 3. tion is quite typical for an analysis involving fast and slow

Due to the two different time scales involved in the dy- dynamics. It works well for small values of parameger
namics of the model, the mechanisms behind the restructur- It follows from the shape of (x,y) that for any value of,
ing of the dynamical behavior can be understood through thenap(3a) generates no more than one periodic trajeciyy
analysis of the fast and slow dynamics separately. In thisvherek is the period(i.e., X,=X,+ ). The cyclesP, always
case, time evolution of the fast variablés studied with the contain the poink,=—1 and the indeX increases stepwise
one-dimensional mag3a where the slow variabley is  (k—k+1) asy decreases. Since the trajectéyalways has
treated as a control parameter whose value drifts slowly im point in the flat interval off(x,y), all these cycles are
accordance with Eq3b). It follows from Eq. (3b) that the  superstable except for bifurcation valuesyofor which the

value ofy remains unchanged only ¥= x4 given by trajectory contains the point,=0 (see Fig. 1 The location
of the spiking branchSgixes, Of “slow” motion in the phase
Xs=—1+o. (4) plane &,,y,) can be estimated as the mean value& obm-

If x<Xs, then the value of slowly increases. Ik>Xg, then puted for the period of cycl®y,

y decreases.

From Eq.(3a one can find the equation for the coordinate 1 )
of fixed pointsx, of the fast map. This equation is of the Xmeari= j mZ;l MV (=1y), (7)
form

k

@ wherek is the period ofP,, andf(™(x,y) is themth iterate
Y=Xp~ 1—x.' ) of Eq. (3a), started at poink and computed for fixed values
p [N .
of y. The spiking branch of “slow” dynamics evaluated us-
wherex,<0. Equation(5) defines the branches of slow mo- ing Eq. (7) is shown in Fig. 4. One can see that this branch
tion in the two-dimensional phase spaeg (y,) (see Fig. 4. has many discontinuities caused by the bifurcations of the
The stable brancls,((y) exists forx,<1-— Ja and the un-  superstable cycleB, .
stable brancl,,(y) exists within - Ja<x,=<0. To complete the picture of fast and slow dynamics of the
Considering the fast and slow dynamics together, one camodel fora>4, one needs to consider the fast map bifurca-
see that, ifks is in the stable brancB,4(y), then the magg3)  tion associated with the formation of homoclinic orbif,
has a stable fixed point. The stable fixed point corresponds toriginating from the unstable fixed point,,. This ho-
the regime of silence in the neural dynamics. The oscillationgnoclinic orbit occurs when the coordinate xf, becomes
in the map dynamics will appear wheg>1—\/a. This is  equal to—1. It can be easily shown that such a situation can
the threshold of excitation, which corresponds to the bifurtake place only ifa>4. The homoclinic orbit forms at the

cation values ofr given by value ofy where the unstable bran@y(y) crosses the line
x=—1[see Fig. 4b)]. When the map is firing spikes and the
Oh=2— \/E (6) value ofy gets to the bifurcation point, the cyck®y merges
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into the homoclinic orbit, disappears, and then the trajectory 8
of the map jumps to the stable fixed poiqs.

Typical phase portraits of the model, obtained under the
assumptions made above, are presented in Fig. 4. Figare 4
shows the typical behavior fora<4. Here, only two re- 6
gimes are generated. The first regime is the state of silence,
when the operating poirOP), given by the intersection of
Xs=—1+0 and one of the branches, is on the branch
Sps(Y). The second regime is the regime of tonic spiking,
when the operating point is selected on the spiking branch 4r spikes ]
Ss ikes:

When a>4 the picture changes qualitativefgee Fig. silence
4(b)]. Now, stable brancheS,y(y) andS;pi.sare separated
by the unstable branc8,,(y). If the operating point is se- 2 :
lected onS,,(y), then the phase of silence, corresponding to -1 -0.5 0 0.5 1
slow motion alongS,4(y), and spiking, when system moves Y
along Sgpikes, alternate forming the regime of spiking-
bursting oscillations. The beginning of a burst of spikes cor-
responds to the bifurcation state of the fast map where fixe
pointsx,s andx,, merge together and disappear. Before thi
bifurcation the system is imx,s and, thereforey increases.

bursts of
spikes

FIG. 5. Bifurcation diagram on the parameter planed).

giated with multistable regimes, and is not shown in Fig. 5.
S The bifurcation diagram shows the role of control param-

L S - . eters in the selection of dynamical features of the considered
The termination of the burst is due to the bifurcation of the y

fast iated with the f i f the h lini neuron model. Both parameters can be used to mimic a par-
ast map associated wi € formation of tn€ NOMOCINICye ;15 type of neural behavior. Parametercan be used to
orbit h,,. Here, the limit cycle of the spiking mode merges

into the h inic orbit and di After that the f model the external dc current injection that depolarizes or
Into the homociinic orbit and cisappears. Alter that the aSthyperpolarizes the neuron. In this casean be written as
subsystem flips to the stable fixed poigf. Then the pro-

cess is repeatddee arrows in Fig. @)].

It is clear from Fig. 4a) that when the operating point is
set onS,¢(y) the model will be in the regime of silence. ) ) )
When the operating point is set on the brar&fyes the whereo is the parameter that selects the dynamics of iso-
model produces tonic spiking, unless the point is set close tiateéd neuron, and. is the parameter that models the dc
the formation of homoclinic orbih,,. One can see that, at current |nje9tgd into the ceI_I. The changes in bghawor caused
the vicinity of this bifurcation, the brancByes becomes by l4¢ are similar to the action of the parameten the well
densely folded. As a result, the behavioryofwhich is gov-  Known Hindmarsh-Rose modT].
ermed by the mean value &f , can become extremely sen- If the |nd|V|dua_1I dynamics _of the mo_deled neuron are ca-
sitive to small perturbations and can even lead to instabilitP@ple of generating only regimes of silence and tonic spik-
caused by high-gain feedback. This is one of the reasons fdpg: @nd do not support the regime of bursts of spikes, then
the irregular, chaotic spiking-bursting behavior that occurs ifh® value ofa should be set below 4. In this case, no matter
the map when the operating point is set close to the area d¥hat the level ofl . injected is, the system will not show
the branchSg,xes Where this branch is densely folded. The bursts of spikegsee Fig. 3
detailed and rigorous analysis of chaotic dynamics cannot be
done within the approximations made above and require ||| MODELING OF RESPONSE TO THE INJECTION
more precise computation &s,ies, Which is beyond the OF CURRENT
scope of this paper. ) ) o

The results of the analysis presented above are summa- 10 study the dynamical regimes of neuronal behavior in
rized in the sketch of the bifurcation diagram plotted on the€Xxperiments, biologists change the type of neural activity
parameter plaind, «) (see Fig. 5. The bifurcation curver,, ~ USing the injection of electric current m?o'the. cell though an
corresponds to the excitation thresh@@) where the fixed electrode. It was §hown above that the injection of dc current
point of the 2D map becomes unstable and the map star@n be modeled in the maf) using parametes,=o [see
generating spikes. Cunla, shows the approximate location Eq. (3)]._In this case, since the external_ mflue_nce does not
of the border between spiking and spiking-bursting regimesvary in time, the role of paramete,= g is not important,
obtained in the numerical simulations. Note that separatioffecause the behavior of the map after the transient is inde-
of spiking and bursting regimes is not always obvious, espePendent of the value g8. However, when the injected cur-
cially in the regime of chaotic spiking. The regime of rent changes with time, it may be useful to consider the
spiking-bursting oscillations takes place within the upper tri-dynamics of paramete, in order to provide more realistic
angle formed by curves,, andLs. The regimes of chaotic modeling behavior during the transient. Taking this into ac-
spiking or spiking-bursting behavior are found in the rela-count, the input of the model can be considered of the form
tively narrow region of the parameters located arolnpd
This region contains complex structure of bifurcations, asso- Bn=B%,, o,=0°,, 9

O':(Tu+|dc, (8)
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FIG. 6. Response of the model wi®=1 and g€=0 to a FIG. 8. Response of the model wittf=1.0 andB¢=1.0 to a
positive pulse of ,. The parameters of the map are selected in thepositive pulse of ,. The parameters of the map are selected in the
regime of tonic spiking §=5.00=0.338=0). regime of tonic spiking §=5.00=0.338=0).

wherel , is the injected current, and coefficien8§ ando®  large, it shuts off the regime of spikingee Fig. 7. This
are selected to achieve the desired properties of respong@ppens because the trajectory of the fast map gets to the
behavior. perturbed operating point that is now on the stable branch
This section briefly illustrates how the relation betweenSps(y) [see Fig. 4b)]. After the pulse is over the spiking
these coefficients affects the dynamics of response to th@oes not reappear immediately because the system spends
pulse ofl,. To be specific, consider the map in the regime ofsome time drifting along the stable branch of slow motions
tonic spiking witha=5.0, 0=0.33, and3=0. To study the ~ Sps(Y), during which the variabley overshoots its original
response behavior, positive and negative pulses of amplitudealue for the spiking regime. As a result, after the system
0.8 and duration of 100 iterations were applied to the conswitches to the spiking brancBpixes, Yo Monotonically
tinuously spiking map. In the simulations presented belowdrifts down to the unperturbed operating point. The dynam-

the coefficients® was selected to be equal to 1. ics of the slow evolution are clearly seen in the lower panel
Figures 6 and 7 show the response to the positive an@f Fig. 7. _
negative pulses, respectively, computed by takBier 0. In Figures 8 and 9 illustrate how response to the pulsk, of

this case, during the action of a positive pulse, the value oghanges when coefficief, is not equal to zero. To be brief
y,, increases monotonically because of the increased value @hd specific consider the case@f=1.0 ands°=1.0. Com-
o, [see Eq(1b)]. The increase of, pushes the fast map up, paring Fig. 8 with Fig. 6 one can see that the response dy-
see Fig. 1. This leads to an increase in the frequency ofamics to the positive pulse changes qualitatively. Indeed,
spiking. After the action of the pulse ends, the valugypf ~When the pulse current is applied, then, acting throgghit
monotonically decreases back to the original state Fig. immediately forces the fast map to shift up. As a result, the
6). rate of spiking and the mean value xf increases sharply.
When a negative pulse is applied, it pushes the operatinyariabley, reacts to this change and decreases its value to
point down and, if the amplitude of the pulse is sufficiently compensate for the sudden change of the mean valug.of
When the action of the pulse is over, the valueBgfreturns

1 F
= T
0
~ =
0
-1t . ] ~
-1t . 5
2 L 4
1 1 1
=
o | 3
-1
( L _3 [ ) A
3.4 | 1
N -34
- S
W >\
-85 1 . N 35 F
0 500 1000 0 500 1000
n n
FIG. 7. Response of the model with®=1.0 andB°=0 to a FIG. 9. Response of the model witif=1.0 and3°=1.0 to a
negative pulse of,,. The parameters of the map are selected in thenegative pulse of,. The parameters of the map are selected in the
regime of tonic spiking ¢=5.00=0.338=0). regime of tonic spiking §=5.00=0.338=0).
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to its original value and, due to the updated levely,pf the

fast map overshoots its original state. As a result, the trajec-
tory of the fast map reaches the stable fixed point. To return
to the original regime of spiking the system has to go all the 1
way along the branches of slow moti@(y) and Sgpikes

'xi,n
o = N

a) ,

T
(

back to the original operating poifgee Fig. 4b)]. This type 2 b)

of response is observed in real neurobiological experiments, o 1 i i:jijg (i il

see, for example, Ref15]. =50 M;U i ‘1"1‘\
Using the same analysis one can understand the new ef- -1 L LN &

fects in the response to a negative pulse caused by the action
of B,. These new effects can be clearly seen comparing Fig. 2
9 with Fig. 7. 5]
The presented results illustrate how the 2D niBpalong = (1)
2

AR
w’:“l"‘;‘l

Pt

LTRIN e [T
A1 1]
il i
e
Wi ‘|“:ﬂ\|"lp|’l| ,\‘..ﬂ.‘ﬂ\h'n i
At et
)
1 Nt pet w,wff\wm
‘

with Eqg. (9) can model a large variety of transient neural y
behavior induced by injected current. Due to the simplicity - 500 1000
of the model one can clearly see the nonlinear mechanisms n

behind the response behavior and apply them to select the

desired balance betwear® and 8¢ to model a particular
type of response.

FIG. 10. Wave forms generated by the two coupled 2D maps
(10) with 0;=0.240 ando,=0.245. Wave forms ok;, and X,
are shown by solid and dashed lines, respectively. Three different
regimes of spiking-bursting behavior are shown. Individual chaotic

IV. REGIMES OF SYNCHRONIZATION IN TWO spiking-bursting oscillations of uncoupled mags=0.0 (3). Re-
COUPLED MAPS gime of synchronized chaotic bursts, computed usirg).043(b).
Regime of antiphase synchronization, computed uging-0.029

This section presents the results of studies of synchroni(-c)
zation regimes in coupled chaotically bursting 2D maps. The ™

goal of this study is to reproduce the main regimes of syn-  fjrst consider the main regimes of synchronization be-
chronous behavior found in a real neurobiological experiyeen the maps generating irregular, chaotic bursts of spikes.
ment[16]. The experiment was carried out on two electri- 1 get the individual dynamics of the maps to this regime,
cally coupled neuronfthe pyloric dilators(PD)] from the o narameters; that takes into account the dc bias current
pyloric central pattern generat¢€PG of the lobster sto- jniected into the neuronsee Ref[16] for details, are tuned
matogastric gangliohl7]. The regimes found in the experi- to the following values:o;=0.240 ando,=0.245. When
m.ent were also reproduced in nurr_1erical_ simulations “Sithese maps are uncoupledj0) they produce chaotic
Hlndmarsh-Rose F“Od@l&l,q' one-d|m§n5|onal map model spiking-bursting oscillations shown in Fig. . When the
[14], and in experiments with electron_|c negrc[n_@:!. coupling becomes sufficiently large the slow components of
The equations used in the numerical simulations of thge st synchronize while spikes within the bursts remain

coupled maps are of the form asynchronougsee the wave forms in Fig. ()], obtained
usingg=0.043. This regime of synchronization is typical for
Xin+1=F(Xin Yin+ Bin), naturally coupled PD neurorsee Fig. 2a) in Ref.[16]].
Introduction of negative coupling<<0, also leads to syn-
Yint1=Yin~ #(Xint 1) +uoitpoin, (100 chronization of bursts, but in this regime of synchronization

) ) - ] the systems burst in antiphase. Typical wave forms produced
where index specifies the cell, and; is the parameter that i, this regime are presented in Fig. (&0 This regime of
defines the dynamics of the uncoupled cell. The couplingynchronization of chaotic bursts is also observed in the ex-
between the cells is provided by the current flowing fromperimental study of coupled PD neurofsee Fig. 2c) in

one cell to the other. This coupling is modeled by Ref. [16]]. It is important to emphasize that, both in this
. simulation and in the experiment, the regime of antiphase
Bin=9;i B (X0~ Xi,n), synchronization is characterized by the onset of regular
bursts.
Ti n=0;i0%(Xj n = Xin), (11 The simplicity of this model enables one to understand

the possible cause for the onset of regular bursting in the
where i#j, and g;; is the parameter characterizing the antiphase synchronization. It is shown in Sec. Il that chaotic
strength of the coupling. The coefficienss and o® set the  dynamics of bursts occurs when the operating point of the
balance between the couplings for the fast and slow prosystem appears close to the leftmost area of the spiking
cesses in the cells, respectively. In the numerical simulationsranchSgikes. In this region,Sqpikesis densely folded and,
the values of the coefficients are set to be eqd&k 1.0 and  if the system slows down in this area, the timing for the end
0°=1.0. The other parameters of the coupled m@@s that  of the burst becomes very sensitive to infinitesimal perturba-
remain unchanged in the simulations have the following valtions.
ues:u=0.001,@;=4.9, anda,=5.0. The coupling between This fact is illustrated in Fig. 1(R). This figure shows the
the maps is symmetrical, i.6g;; =g;;=9. attractor computed from the wave forms, andy, , of the

041922-6



MODELING OF SPIKING-BURSTING NEURA . .. PHYSICAL REVIEW E 65 041922

-1t

5 : : ‘ ‘ ‘
-37 -369 -368 -367 -366 -365

Yr

FIG. 11. Attractors computed from the wave forms of the first cell operating in the regime of uncoupled osci(l@tamsin the regime
of antiphase synchronizatigh). Wave forms for these regimes are shown in Figgajl@nd 1@c), respectively. The points of the attractors
are connected by lines to clearly show their sequence in time.

first cell when the cells are uncouplétthis regime is shown this fast change the duration of bursting is determined only
in Fig. 10@]. To plot the attractor, the wave forms ®f , by the dynamics of the silent phase, which is regular.

andy, , were filtered by a fourth order low-pass filter with a It was observed in the experiment that, in the regime of
cutoff frequency of 0.6. As a result, the attractor does notonic spiking, spikes in PD neurons synchronize at low levels

; ; ; f coupling (i.e., without added artificial coupling, see Ref.
contain sharp spikes and the approximate locasgg)yes, 0 . : o
which is close to the center of filtered spiking oscillations, is[16] for detailg. This property of synchronization in the re-

) : gime of tonic spiking is also typical for the dynamics of the
easy to see. The level of coordinatg, corresponding to the  \ohq considered hetsee Fig. 12 In these numerical simu-

operating point, is equal t8=—1+0,= —0.76_. O_ne can Jations, the uncoupled maps were tuned to generate spikes
see from Fig. 1@a) that when the center of oscillations gets with slightly different rates. One can clearly see the beats
close to that level the trajectory becomes rather complex, asetween the wave forms plotted in Fig.(&2 When a small
shown by the dense set of trajectories in the left part of theoupling,g=0.008, is introduced the beats disappear as soon
attractor. as the spikes get synchronizgske Fig. 1f)].

The numerical simulations show that this effect of regu- Although the synchronization between continuously spik-
larization takes place even whetf=0. Therefore, the ver- NG Maps is easily achieved, it is important to understand that
tical shift of operating pointss, caused by the slow coupling the dynamics of such synchronization in the maps is a much

current is not very important for this effect. The coupling MOré complex process than it is in the models with continu-

term B, , directly influences the fast dynamics by shifting the ous t"T‘e- I_Due to the discrete t!me, th_e periodiq spikes can
graph of the 1D mayisee Fig. 1 up or down depending on lock with different frequency ratios. This results in the exis-

. . . 2 . _tence of a complex multistable structure of synchronization
the sign ofB3; ,. In the regime of antiphase synchronization ~ . . . )

. b ; ) o . regimes. This structure becomes more noticeable in the dy-
Bin is positive when theth cell is spiking, and negative

T . . namics of synchronization as the number of iterations in the
when it is silent. Therefore, from the viewpoint of fast dy-

. . period of spikes decreases.
namics, the coupling forces the cells to stay on the current

branch of slow motion. One can understand these dynamics 2
from the graph off(x,y) and Eq.(1a). This effect is also 1
0

LR LRRED YRR [Dhe ‘i’l\ il ATkl
seen as the formation of an extended shape of attractor plot- >-§ ' : M‘/' "ISJ: :R:I \M} : b ol Mj
ted for the regime of antiphase synchronizatimee Fig. R H VAV Yl
11(b)]. Note that axes in Figs. 1d) and 11b) have different . . . .

| I

In the regime of chaotic bursts the levelxfis close to
0 100 200 300 400 500

o =N

the stable branch of spiking;ixes, and, therefore, the slow >'§ U
evolution along the branch of silen&,, is faster than that -1
along Spikes: This means that duration of the phase of si-
lence in the cell is shorter than duration of the burst of
spikes. When the cell switches from silence to spiking it
sharply changes the value and the sigrBpf. This change FIG. 12. Tonic spiking wave forms generated with=0.653
pushesSpikes Of the spiking cell down to its original loca- ando,=0.714. Wave forms of, , andx, , are shown by solid and
tion, and, as a result, quickly drags the trajectory through th@ashed lines, respectively. Spiking in the uncoupled mgp<).0
area of complex behavior towards the brar&fy. Due to  (a). Regime of synchronized spikes, computed vgjth0.008 (b).
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V. DISCUSSION AND OUTLOOK the middle interval off(x,y) for several iterations. This can
. . happen when the external influence monotonically pushes
The simple phenomenological model of complex dynam-, . : . . : :
. L . T the function up while the trajectory is located in the middle
ics of spiking-bursting neural activity is proposed. The. L In thi h : il h iddl
model is given by two-dimensional maf). The first equa- interval. In this case, the trajectory will map to the midd'e
tion (1a) of the map describes the fast d .namics Its isolate nterval again and again, increasing the duration of a spike.
7 P . ynamics. .~ This artifact can be removed using one of the following

dynamics is capable of generating stable limit cycles, which__~..~ . . -

e T L .~ madifications. Introduction of a sufficient gap between the
mimics the spiking activity of a neuron, and a stable fixed

. . . . right end of this interval and the diagon@ee Fig. 1 will
point, Wh'(.:h corresponds to phase of silence. This 1D ”.‘a'%em the map to terminate the spike despite the monotonic
has a region of parameters were both these stable regim

. . . . : &fevation of the function. Alternatively, one can introduce an
coexist. Existence of such multistable regimes is the reasofj

for generation of bursts, when the operating point, defined badditional condition to the fast mafia that forces the map

9 . ’ Joperating point, %\Iways to iterate its trajectory from the middle interval to the
the dj/(rtl)%mms of the second equatidh), is properly sefsee rightmost one, despite the dynamicsyofsee Eq.(2)]. This
Fig. . L . . DI

The shape of the nonlinear functidifx,y) used in Eq. can be achieved using the functib¢x, ,y) of the following

(19 is selected in the forng2) based on the following con- form

siderations:(i) The fast map should generate limit cycles al(1—Xx,)+Yy, X,<O
whose wave forms mimic those of the spikés. Each spike

generated by the map always has a single iteration residingf(x,,y)=
on the rightmost intervat= «+y. Therefore, the moment of -1, Xp=a+y or X, 1>0.
time corresponding to the appearance of a trajectory on this

interval can be used to define the time of a spike. This fea- important feature of the model discussed here is that
ture is i_mportant for modeling the dyn_qmics of chem_ical SYNone can use two inputs, and o, to achieve the desired
apses in a group of coupled neurofiti) The analytic ex- oqhonse dynamics. Although these inputs are not directly
pression of the nonlinear function in the intervat 0 should  g|5ted to dynamics of specific ionic currents, they can be
be simple enough to allow rigorous analysis of bifurcationsseq o capture the collective dynamics of these currents.
of fixed points of the fast magiv) Use of the fixed level, ggjecting a proper balance between these inputs, one can
—1, in the rightmost interval of the function simplifies the qqe| 4 Jarge variety of the responses that are seen in differ-
analysis of dynamics at the end of the bursts. The end of @n heyrons. Again, the simplicity of the model helps one to
burst is associated with the formation of a homoclinic orbit ,, yerstand the dynamical properties of each input and set the

Fhat corresponds to the case When the trajectory from th'Broper balance between them.
interval maps into the unstable fixed poisee Sec. )|
It is clear that the shape of fu_nctl(ﬁﬁ) can be modified to ACKNOWLEDGMENTS
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