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Modeling of spiking-bursting neural behavior using two-dimensional map

Nikolai F. Rulkov
Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402

~Received 5 October 2001; published 10 April 2002!

A simple model that replicates the dynamics of spiking and spiking-bursting activity of real biological
neurons is proposed. The model is a two-dimensional map that contains one fast and one slow variable. The
mechanisms behind generation of spikes, bursts of spikes, and restructuring of the map behavior are explained
using phase portrait analysis. The dynamics of two coupled maps that model the behavior of two electrically
coupled neurons is discussed. Synchronization regimes for spiking and bursting activities of these maps are
studied as a function of coupling strength. It is demonstrated that the results of this model are in agreement
with the synchronization of chaotic spiking-bursting behavior experimentally found in real biological neurons.
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I. INTRODUCTION

Understanding dynamical principles and mechanisms
hind the control of activity, signal and information proces
ings that occur in neurobiological networks is hardly po
sible without numerical studies of collective dynamics
large networks of neurons. These simulations need to
into account the complex architecture of couplings amo
individual neurons, which is suggested by data from biolo
cal experiments. One of the complicating factors in und
standing the simulation results is the complexity of tempo
behavior of individual biological neurons. This complexity
due to the large number of ionic currents involved in t
nonlinear dynamics of neurons. As a result, realistic chan
based models proposed for a single neuron is usually a
tem of many nonlinear differential equations~see, for ex-
ample, Refs.@1–5# and the review of the models in Ref.@6#!.
The strong nonlinearity and high dimensionality of the pha
space is a significant obstacle in understanding the collec
behavior of such dynamical systems. The dynamical mec
nisms responsible for restructuring collective behavior o
network of channel-based neuron models are difficult or
possible to analyze because these mechanisms are wel
den behind the complexity of the equations. If there is
chance to identify possible dynamical mechanisms behin
particular behavior of the network without the use of co
plex models, then this knowledge can be used to gu
through numerical study of this behavior with the hig
dimensional channel-based models. Based on these re
one can specify the actual dynamical mechanism that
curred in the network and understand the biological p
cesses that contribute to it.

One way to reveal the dynamical mechanisms is to us
simplified or phenomenological model of the neuron. Ho
ever, many experiments indicate that the restructuring of
lective behavior utilizes a variety of dynamical regimes ge
erated by individual dynamics of a neuron. When neu
dynamics include the regime chaotic spiking-bursting os
lations the system of differential equations describing e
neuron should be at least a three-dimensional~3D! system
~see, for example, Ref.@7#!. Further simplification of phe-
nomenological models for complex dynamics of the neu
can be obtained using dynamical systems in the form o
1063-651X/2002/65~4!/041922~9!/$20.00 65 0419
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map. Despite the low-dimensional phase space of this n
linear map, it is able to demonstrate a large variety of co
plex dynamical regimes.

The use of low-dimensional model maps can be useful
understanding the dynamical mechanisms if they mimic
dynamics of oscillations observed in real neurons, show c
rect restructuring of collective behavior, and are simp
enough to study the reasons behind such restructuring.
development of a model map that is capable of describ
various types of neural activities, including generation
tonic spikes, irregular spiking, and both regular and irregu
bursts of spikes, is the goal of this paper.

It is known that while constructing a low-dimension
system of differential equations, which is capable of gen
ating fast spikes bursts excited on top of the slow osci
tions, one needs to consider a system that has both slow
fast dynamics~see, for example, Refs.@7–11#!. Using the
same approach one can construct a two-dimensional m
which can be written in the form

xn115 f ~xn ,yn1bn!, ~1a!

yn115yn2m~xn11!1msn , ~1b!

wherexn is the fast andyn is the slow dynamical variable
Slow time evolution ofyn is due to small values of the pa
rameterm50.001. Termsbn andsn describe external influ-
ences applied to the map. These terms model the dyna
of the neuron under the action of the external dc bias cur
I dc and synaptic inputsI n

syn. The termsn can also be used a
the control parameter to select the regime of individual
havior.

A model in the form of a two-dimensional map, whos
form is similar to Eq.~1! was used in the study of dynamica
mechanisms behind the emergence and regularization of
otic bursts in a group of synchronously bursting ce
coupled through a mean field@12,13#. The effect of antiphase
regularization was also modeled before with on
dimensional maps@14#. In both these models the oscillation
during the burst were described by a chaotic trajectory. M
~1! improves these models by adding a feature that ena
one to mimic the dynamics of individual spikes within th
©2002 The American Physical Society22-1
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burst. This is achieved using a modification of the shape
the nonlinear functionf (x,y) that is now a discontinuou
function of the form

f ~x,y!5H a/~12x!1y, x<0

a1y, 0,x,a1y

21, x>a1y,
~2!

wherea is a control parameter of the map. The depende
of f (x,y) on x computed for a fixed value ofy is shown in
Fig. 1. In this plot the values ofa andy are set to illustrate
the possibility of coexistence of limit cyclePk , correspond-
ing to spiking oscillation in Eq.~1a!, and fixed pointsxps and
xpu . Note that wheny increases or decreases the graph
f (x,y) moves up or down, respectively, except for the th
intervalx>a1y, where the values off (x,y) always remain
equal to21.

The paper is organized as follows: Sec. II considers
features of the fast and slow dynamics, which explain
formation of various types of behavior in the isolated map
also discusses the bifurcations responsible for the qualita
change of activity. The dynamics of response generated
the map after it is excited or inhibited by an external pulse
discussed in Sec. III. The goal of this section is to illustr
dynamical mechanisms that control the response, and
show how the relation between the two inputs of the m
influence the properties of the response. Section IV pres
the results of a synchronization study in two coupled ma

II. INDIVIDUAL DYNAMICS OF THE MAP

Consider the regimes of oscillations produced by the
dividual dynamics of the map. In this case the inputsbn
5b and sn5s are constants. Note that ifb is a constant,
then it can be omitted from the equations using the chang
variable yn1b→yn

new. Therefore, the individual dynamic

FIG. 1. The shape of the nonlinear functionf (x,y), plotted for
a56.0 andy523.93, is shown with a solid line. The dashed lin
illustrates a superstable cyclePk of the fast map~3a!, where the
value ofy is fixed. The stable and unstable fixed points of the m
are indicated byxps andxpu , respectively.
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of the map depends only on the control parametersa ands,
and the map can be rewritten in the form

xn115 f ~xn ,yn!, ~3a!

yn115yn2m~xn11!1ms. ~3b!

Typical regimes of temporal behavior of the map are sho
in Figs. 2 and 3. When the value ofa is less than 4.0 then
depending on the value of parameters, the map generate
spikes or stays in a steady state~see Fig. 2!. The frequency of
the spikes increases as the value of parameters is increased
~see Fig. 2!.

p FIG. 2. Wave forms of spiking behavior generated by map~3!
with a54. Figure 2~a! shows the transition to the regime of silenc
for s520.01. The regimes of continuous tonic spiking are co
puted fors50.01 ~b! ands50.1 ~c!.

FIG. 3. Typical wave forms of the spiking-bursting behavi
generated by the map~3! for the following parameter values:a
54.5, s50.14 ~a!; a56.0, s520.1 ~b!; and a56.0, s
50.386~c!.
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MODELING OF SPIKING-BURSTING NEURAL . . . PHYSICAL REVIEW E 65 041922
FIG. 4. Stable@Sps(y),Sspikes# and unstable@Spu(y)# branches of slow dynamics of Eq.~3! plotted on the plane of phase variables (y,x).
The cases ofa54 anda56 are presented in~a! and~b!, respectively. Numbers on the branchSspikesstand for the value ofk of the cycles
Pk . The operating points OP’s are selected to illustrate the regime of silence in~a! and the regime of spiking-bursting oscillations in~b!.
Arrows indicate the direction of slow evolution along the branches, and switching in the case of~b!.
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For a.4 the map dynamics are capable of produc
bursts of spikes. The spiking-bursting regimes are found
the intermediate region of parameters between the regime
of continuous tonic spiking and steady state~silence!. The
spiking-bursting regimes include both periodic and chao
burstings. A few typical bursting-spiking regimes comput
for different values ofs are presented in Fig. 3.

Due to the two different time scales involved in the d
namics of the model, the mechanisms behind the restruc
ing of the dynamical behavior can be understood through
analysis of the fast and slow dynamics separately. In
case, time evolution of the fast variablex is studied with the
one-dimensional map~3a! where the slow variabley is
treated as a control parameter whose value drifts slowly
accordance with Eq.~3b!. It follows from Eq. ~3b! that the
value ofy remains unchanged only ifx5xs given by

xs5211s. ~4!

If x,xs , then the value ofy slowly increases. Ifx.xs , then
y decreases.

From Eq.~3a! one can find the equation for the coordina
of fixed pointsxp of the fast map. This equation is of th
form

y5xp2
a

12xp
, ~5!

wherexp<0. Equation~5! defines the branches of slow mo
tion in the two-dimensional phase space (xn ,yn) ~see Fig. 4!.
The stable branchSps(y) exists forxp,12Aa and the un-
stable branchSpu(y) exists within 12Aa<xp<0.

Considering the fast and slow dynamics together, one
see that, ifxs is in the stable branchSps(y), then the map~3!
has a stable fixed point. The stable fixed point correspond
the regime of silence in the neural dynamics. The oscillati
in the map dynamics will appear whenxs.12Aa. This is
the threshold of excitation, which corresponds to the bif
cation values ofs given by

s th522Aa. ~6!
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To understand the dynamics of excited neurons within t
model one needs to consider branches that correspond t
spiking regime. To evaluate the location of the spiki
branches, consider the mean value ofxn computed for the
periodic trajectory of the fast map~3a! as a function ofy.
Herey is treated as a parameter. Use of such an approxi
tion is quite typical for an analysis involving fast and slo
dynamics. It works well for small values of parameterm.

It follows from the shape off (x,y) that for any value ofy,
map~3a! generates no more than one periodic trajectoryPk ,
wherek is the period~i.e., xn5xn1k!. The cyclesPk always
contain the pointxn521 and the indexk increases stepwise
(k→k11) asy decreases. Since the trajectoryPk always has
a point in the flat interval off (x,y), all these cycles are
superstable except for bifurcation values ofy for which the
trajectory contains the pointxn50 ~see Fig. 1!. The location
of the spiking branch,Sspikes, of ‘‘slow’’ motion in the phase
plane (xn ,yn) can be estimated as the mean value ofx com-
puted for the period of cyclePk ,

xmean5
1

k (
m51

k

f (m)~21,y!, ~7!

wherek is the period ofPk , and f (m)(x,y) is themth iterate
of Eq. ~3a!, started at pointx and computed for fixed value
of y. The spiking branch of ‘‘slow’’ dynamics evaluated u
ing Eq. ~7! is shown in Fig. 4. One can see that this bran
has many discontinuities caused by the bifurcations of
superstable cyclesPk .

To complete the picture of fast and slow dynamics of t
model fora.4, one needs to consider the fast map bifurc
tion associated with the formation of homoclinic orbithpu
originating from the unstable fixed pointxpu . This ho-
moclinic orbit occurs when the coordinate ofxpu becomes
equal to21. It can be easily shown that such a situation c
take place only ifa.4. The homoclinic orbit forms at the
value ofy where the unstable branchSpu(y) crosses the line
x521 @see Fig. 4~b!#. When the map is firing spikes and th
value ofy gets to the bifurcation point, the cyclePk merges
2-3
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NIKOLAI F. RULKOV PHYSICAL REVIEW E 65 041922
into the homoclinic orbit, disappears, and then the traject
of the map jumps to the stable fixed pointxps .

Typical phase portraits of the model, obtained under
assumptions made above, are presented in Fig. 4. Figure~a!
shows the typical behavior for 2,a<4. Here, only two re-
gimes are generated. The first regime is the state of sile
when the operating point~OP!, given by the intersection o
xs5211s and one of the branches, is on the bran
Sps(y). The second regime is the regime of tonic spikin
when the operating point is selected on the spiking bra
Sspikes.

When a.4 the picture changes qualitatively@see Fig.
4~b!#. Now, stable branchesSps(y) andSspikesare separated
by the unstable branchSpu(y). If the operating point is se
lected onSpu(y), then the phase of silence, corresponding
slow motion alongSps(y), and spiking, when system move
along Sspikes, alternate forming the regime of spiking
bursting oscillations. The beginning of a burst of spikes c
responds to the bifurcation state of the fast map where fi
pointsxps andxpu merge together and disappear. Before t
bifurcation the system is inxps and, therefore,y increases.
The termination of the burst is due to the bifurcation of t
fast map associated with the formation of the homocli
orbit hpu . Here, the limit cycle of the spiking mode merg
into the homoclinic orbit and disappears. After that the f
subsystem flips to the stable fixed pointxps . Then the pro-
cess is repeated@see arrows in Fig. 4~b!#.

It is clear from Fig. 4~a! that when the operating point i
set onSps(y) the model will be in the regime of silence
When the operating point is set on the branchSspikes the
model produces tonic spiking, unless the point is set clos
the formation of homoclinic orbithpu . One can see that, a
the vicinity of this bifurcation, the branchSspikes becomes
densely folded. As a result, the behavior ofy, which is gov-
erned by the mean value ofxn , can become extremely sen
sitive to small perturbations and can even lead to instab
caused by high-gain feedback. This is one of the reasons
the irregular, chaotic spiking-bursting behavior that occurs
the map when the operating point is set close to the are
the branchSspikes where this branch is densely folded. Th
detailed and rigorous analysis of chaotic dynamics canno
done within the approximations made above and req
more precise computation ofSspikes, which is beyond the
scope of this paper.

The results of the analysis presented above are sum
rized in the sketch of the bifurcation diagram plotted on
parameter plain (s,a) ~see Fig. 5!. The bifurcation curves th
corresponds to the excitation threshold~6! where the fixed
point of the 2D map becomes unstable and the map s
generating spikes. CurveLts shows the approximate locatio
of the border between spiking and spiking-bursting regim
obtained in the numerical simulations. Note that separa
of spiking and bursting regimes is not always obvious, es
cially in the regime of chaotic spiking. The regime
spiking-bursting oscillations takes place within the upper
angle formed by curvess th andLts . The regimes of chaotic
spiking or spiking-bursting behavior are found in the re
tively narrow region of the parameters located aroundLts .
This region contains complex structure of bifurcations, as
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ciated with multistable regimes, and is not shown in Fig.
The bifurcation diagram shows the role of control para

eters in the selection of dynamical features of the conside
neuron model. Both parameters can be used to mimic a
ticular type of neural behavior. Parameters can be used to
model the external dc current injection that depolarizes
hyperpolarizes the neuron. In this cases can be written as

s5su1I dc , ~8!

wheresu is the parameter that selects the dynamics of i
lated neuron, andI dc is the parameter that models the d
current injected into the cell. The changes in behavior cau
by I dc are similar to the action of the parameterI in the well
known Hindmarsh-Rose model@7#.

If the individual dynamics of the modeled neuron are c
pable of generating only regimes of silence and tonic sp
ing, and do not support the regime of bursts of spikes, t
the value ofa should be set below 4. In this case, no mat
what the level ofI dc injected is, the system will not show
bursts of spikes~see Fig. 5!.

III. MODELING OF RESPONSE TO THE INJECTION
OF CURRENT

To study the dynamical regimes of neuronal behavior
experiments, biologists change the type of neural activ
using the injection of electric current into the cell though
electrode. It was shown above that the injection of dc curr
can be modeled in the map~1! using parametersn5s @see
Eq. ~8!#. In this case, since the external influence does
vary in time, the role of parameterbn5b is not important,
because the behavior of the map after the transient is in
pendent of the value ofb. However, when the injected cur
rent changes with time, it may be useful to consider
dynamics of parameterbn in order to provide more realistic
modeling behavior during the transient. Taking this into a
count, the input of the model can be considered of the fo

bn5beI n , sn5seI n , ~9!

FIG. 5. Bifurcation diagram on the parameter plane (s,a).
2-4
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whereI n is the injected current, and coefficientsbe andse

are selected to achieve the desired properties of resp
behavior.

This section briefly illustrates how the relation betwe
these coefficients affects the dynamics of response to
pulse ofI n . To be specific, consider the map in the regime
tonic spiking witha55.0, s50.33, andb50. To study the
response behavior, positive and negative pulses of ampli
0.8 and duration of 100 iterations were applied to the c
tinuously spiking map. In the simulations presented bel
the coefficientse was selected to be equal to 1.

Figures 6 and 7 show the response to the positive
negative pulses, respectively, computed by takingbe50. In
this case, during the action of a positive pulse, the value
yn increases monotonically because of the increased valu
sn @see Eq.~1b!#. The increase ofyn pushes the fast map up
see Fig. 1. This leads to an increase in the frequency
spiking. After the action of the pulse ends, the value ofyn
monotonically decreases back to the original state~see Fig.
6!.

When a negative pulse is applied, it pushes the opera
point down and, if the amplitude of the pulse is sufficien

FIG. 6. Response of the model withse51 and be50 to a
positive pulse ofI n . The parameters of the map are selected in
regime of tonic spiking (a55.0,s50.33,b50).

FIG. 7. Response of the model withse51.0 andbe50 to a
negative pulse ofI n . The parameters of the map are selected in
regime of tonic spiking (a55.0,s50.33,b50).
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large, it shuts off the regime of spiking~see Fig. 7!. This
happens because the trajectory of the fast map gets to
perturbed operating point that is now on the stable bra
Sps(y) @see Fig. 4~b!#. After the pulse is over the spiking
does not reappear immediately because the system sp
some time drifting along the stable branch of slow motio
Sps(y), during which the variabley overshoots its original
value for the spiking regime. As a result, after the syst
switches to the spiking branchSspikes, yn monotonically
drifts down to the unperturbed operating point. The dyna
ics of the slow evolution are clearly seen in the lower pa
of Fig. 7.

Figures 8 and 9 illustrate how response to the pulse oI n
changes when coefficientbn is not equal to zero. To be brie
and specific consider the case ofbe51.0 andse51.0. Com-
paring Fig. 8 with Fig. 6 one can see that the response
namics to the positive pulse changes qualitatively. Inde
when the pulse current is applied, then, acting throughbn , it
immediately forces the fast map to shift up. As a result,
rate of spiking and the mean value ofxn increases sharply
Variable yn reacts to this change and decreases its valu
compensate for the sudden change of the mean value ofxn .
When the action of the pulse is over, the value ofbn returns

e

e

FIG. 8. Response of the model withse51.0 andbe51.0 to a
positive pulse ofI n . The parameters of the map are selected in
regime of tonic spiking (a55.0,s50.33,b50).

FIG. 9. Response of the model withse51.0 andbe51.0 to a
negative pulse ofI n . The parameters of the map are selected in
regime of tonic spiking (a55.0,s50.33,b50).
2-5
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NIKOLAI F. RULKOV PHYSICAL REVIEW E 65 041922
to its original value and, due to the updated levels ofyn , the
fast map overshoots its original state. As a result, the tra
tory of the fast map reaches the stable fixed point. To ret
to the original regime of spiking the system has to go all
way along the branches of slow motionSps(y) and Sspikes
back to the original operating point@see Fig. 4~b!#. This type
of response is observed in real neurobiological experime
see, for example, Ref.@15#.

Using the same analysis one can understand the new
fects in the response to a negative pulse caused by the a
of bn . These new effects can be clearly seen comparing
9 with Fig. 7.

The presented results illustrate how the 2D map~1! along
with Eq. ~9! can model a large variety of transient neu
behavior induced by injected current. Due to the simplic
of the model one can clearly see the nonlinear mechani
behind the response behavior and apply them to select
desired balance betweense and be to model a particular
type of response.

IV. REGIMES OF SYNCHRONIZATION IN TWO
COUPLED MAPS

This section presents the results of studies of synchr
zation regimes in coupled chaotically bursting 2D maps. T
goal of this study is to reproduce the main regimes of s
chronous behavior found in a real neurobiological expe
ment @16#. The experiment was carried out on two elect
cally coupled neurons@the pyloric dilators~PD!# from the
pyloric central pattern generator~CPG! of the lobster sto-
matogastric ganglion@17#. The regimes found in the exper
ment were also reproduced in numerical simulations us
Hindmarsh-Rose model@18,19#, one-dimensional map mode
@14#, and in experiments with electronic neurons@19#.

The equations used in the numerical simulations of
coupled maps are of the form

xi ,n115 f ~xi ,n ,yi ,n1b i ,n!,

yi ,n115yi ,n2m~xi ,n11!1ms i1ms i ,n , ~10!

where indexi specifies the cell, ands i is the parameter tha
defines the dynamics of the uncoupled cell. The coupl
between the cells is provided by the current flowing fro
one cell to the other. This coupling is modeled by

b i ,n5gji b
e~xj ,n2xi ,n!,

s i ,n5gji s
e~xj ,n2xi ,n!, ~11!

where i 5” j , and gji is the parameter characterizing th
strength of the coupling. The coefficientsbe andse set the
balance between the couplings for the fast and slow p
cesses in the cells, respectively. In the numerical simulat
the values of the coefficients are set to be equal:be51.0 and
se51.0. The other parameters of the coupled maps~10! that
remain unchanged in the simulations have the following v
ues:m50.001,a154.9, anda255.0. The coupling between
the maps is symmetrical, i.e.,gji 5gi j 5g.
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First, consider the main regimes of synchronization b
tween the maps generating irregular, chaotic bursts of spi
To set the individual dynamics of the maps to this regim
the parameterss i that takes into account the dc bias curre
injected into the neurons~see Ref.@16# for details!, are tuned
to the following values:s150.240 ands250.245. When
these maps are uncoupled (g50) they produce chaotic
spiking-bursting oscillations shown in Fig. 10~a!. When the
coupling becomes sufficiently large the slow components
the bursts synchronize while spikes within the bursts rem
asynchronous@see the wave forms in Fig. 10~b!#, obtained
usingg50.043. This regime of synchronization is typical fo
naturally coupled PD neurons@see Fig. 2~a! in Ref. @16##.

Introduction of negative couplingg,0, also leads to syn-
chronization of bursts, but in this regime of synchronizati
the systems burst in antiphase. Typical wave forms produ
in this regime are presented in Fig. 10~c!. This regime of
synchronization of chaotic bursts is also observed in the
perimental study of coupled PD neurons@see Fig. 2~c! in
Ref. @16##. It is important to emphasize that, both in th
simulation and in the experiment, the regime of antipha
synchronization is characterized by the onset of regu
bursts.

The simplicity of this model enables one to understa
the possible cause for the onset of regular bursting in
antiphase synchronization. It is shown in Sec. II that chao
dynamics of bursts occurs when the operating point of
system appears close to the leftmost area of the spik
branchSspikes. In this region,Sspikes is densely folded and
if the system slows down in this area, the timing for the e
of the burst becomes very sensitive to infinitesimal pertur
tions.

This fact is illustrated in Fig. 11~a!. This figure shows the
attractor computed from the wave formsx1,n andy1,n of the

FIG. 10. Wave forms generated by the two coupled 2D m
~10! with s150.240 ands250.245. Wave forms ofx1,n and x2,n

are shown by solid and dashed lines, respectively. Three diffe
regimes of spiking-bursting behavior are shown. Individual chao
spiking-bursting oscillations of uncoupled maps,g50.0 ~a!. Re-
gime of synchronized chaotic bursts, computed usingg50.043~b!.
Regime of antiphase synchronization, computed usingg520.029
~c!.
2-6
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FIG. 11. Attractors computed from the wave forms of the first cell operating in the regime of uncoupled oscillations~a! and in the regime
of antiphase synchronization~b!. Wave forms for these regimes are shown in Figs. 10~a! and 10~c!, respectively. The points of the attracto
are connected by lines to clearly show their sequence in time.
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the
first cell when the cells are uncoupled@this regime is shown
in Fig. 10~a!#. To plot the attractor, the wave forms ofx1,n

andy1,n were filtered by a fourth order low-pass filter with
cutoff frequency of 0.6. As a result, the attractor does
contain sharp spikes and the approximate locationSspikes,
which is close to the center of filtered spiking oscillations,
easy to see. The level of coordinatexf , corresponding to the
operating point, is equal toxs5211s1520.76. One can
see from Fig. 11~a! that when the center of oscillations ge
close to that level the trajectory becomes rather complex
shown by the dense set of trajectories in the left part of
attractor.

The numerical simulations show that this effect of reg
larization takes place even whense50. Therefore, the ver-
tical shift of operating point,xs , caused by the slow couplin
current is not very important for this effect. The couplin
termb i ,n directly influences the fast dynamics by shifting t
graph of the 1D map~see Fig. 1! up or down depending on
the sign ofb i ,n . In the regime of antiphase synchronizatio
b i ,n is positive when thei th cell is spiking, and negative
when it is silent. Therefore, from the viewpoint of fast d
namics, the coupling forces the cells to stay on the curr
branch of slow motion. One can understand these dynam
from the graph off (x,y) and Eq.~1a!. This effect is also
seen as the formation of an extended shape of attractor
ted for the regime of antiphase synchronization@see Fig.
11~b!#. Note that axes in Figs. 11~a! and 11~b! have different
scales.

In the regime of chaotic bursts the level ofxs is close to
the stable branch of spikingSspikes, and, therefore, the slow
evolution along the branch of silenceSpu is faster than that
along Sspikes. This means that duration of the phase of
lence in the cell is shorter than duration of the burst
spikes. When the cell switches from silence to spiking
sharply changes the value and the sign ofb i ,n . This change
pushesSspikes of the spiking cell down to its original loca
tion, and, as a result, quickly drags the trajectory through
area of complex behavior towards the branchSpu . Due to
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this fast change the duration of bursting is determined o
by the dynamics of the silent phase, which is regular.

It was observed in the experiment that, in the regime
tonic spiking, spikes in PD neurons synchronize at low lev
of coupling ~i.e., without added artificial coupling, see Re
@16# for details!. This property of synchronization in the re
gime of tonic spiking is also typical for the dynamics of th
maps considered here~see Fig. 12!. In these numerical simu
lations, the uncoupled maps were tuned to generate sp
with slightly different rates. One can clearly see the be
between the wave forms plotted in Fig. 12~a!. When a small
coupling,g50.008, is introduced the beats disappear as s
as the spikes get synchronized@see Fig. 12~b!#.

Although the synchronization between continuously sp
ing maps is easily achieved, it is important to understand
the dynamics of such synchronization in the maps is a m
more complex process than it is in the models with contin
ous time. Due to the discrete time, the periodic spikes
lock with different frequency ratios. This results in the ex
tence of a complex multistable structure of synchronizat
regimes. This structure becomes more noticeable in the
namics of synchronization as the number of iterations in
period of spikes decreases.

FIG. 12. Tonic spiking wave forms generated withs150.653
ands250.714. Wave forms ofx1,n andx2,n are shown by solid and
dashed lines, respectively. Spiking in the uncoupled maps,g50.0
~a!. Regime of synchronized spikes, computed withg50.008~b!.
2-7



m
he

te
ic
ed
a

im
s
b

-
es

di
f
th
ea
n

n

e
of
bi
th

b
he
u
s

.
nc
d
q

y

hes
le
le
ike.
ng
he

nic
an

he

hat

ctly
be
nts.
can

ffer-
to

t the

.
h,
s

e
e

NIKOLAI F. RULKOV PHYSICAL REVIEW E 65 041922
V. DISCUSSION AND OUTLOOK

The simple phenomenological model of complex dyna
ics of spiking-bursting neural activity is proposed. T
model is given by two-dimensional map~1!. The first equa-
tion ~1a! of the map describes the fast dynamics. Its isola
dynamics is capable of generating stable limit cycles, wh
mimics the spiking activity of a neuron, and a stable fix
point, which corresponds to phase of silence. This 1D m
has a region of parameters were both these stable reg
coexist. Existence of such multistable regimes is the rea
for generation of bursts, when the operating point, defined
the dynamics of the second equation~1b!, is properly set@see
Fig. 4~b!#.

The shape of the nonlinear functionf (x,y) used in Eq.
~1a! is selected in the form~2! based on the following con
siderations:~i! The fast map should generate limit cycl
whose wave forms mimic those of the spikes.~ii ! Each spike
generated by the map always has a single iteration resi
on the rightmost intervalx>a1y. Therefore, the moment o
time corresponding to the appearance of a trajectory on
interval can be used to define the time of a spike. This f
ture is important for modeling the dynamics of chemical sy
apses in a group of coupled neurons.~iii ! The analytic ex-
pression of the nonlinear function in the intervalx,0 should
be simple enough to allow rigorous analysis of bifurcatio
of fixed points of the fast map.~iv! Use of the fixed level,
21, in the rightmost interval of the function simplifies th
analysis of dynamics at the end of the bursts. The end
burst is associated with the formation of a homoclinic or
that corresponds to the case when the trajectory from
interval maps into the unstable fixed point~see Sec. II!.

It is clear that the shape of function~2! can be modified to
take into account other dynamical features that need to
modeled. Due to the low dimensionality of the model, t
dynamical mechanisms behind its behavior are easy to
derstand using phase plane analysis. This allows one to
how the introduced modifications influence the dynamics

Some modification of the fast map is required to enha
the region of parameters where the model can still be use
mimic neural dynamics properties. For example, from E
~2! and Fig. 1, one can see that due to the dynamics
coupling terms, the trajectory of the fast system can sta
, J

rn

r.
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the middle interval off (x,y) for several iterations. This can
happen when the external influence monotonically pus
the function up while the trajectory is located in the midd
interval. In this case, the trajectory will map to the midd
interval again and again, increasing the duration of a sp
This artifact can be removed using one of the followi
modifications. Introduction of a sufficient gap between t
right end of this interval and the diagonal~see Fig. 1! will
help the map to terminate the spike despite the monoto
elevation of the function. Alternatively, one can introduce
additional condition to the fast map~1a! that forces the map
always to iterate its trajectory from the middle interval to t
rightmost one, despite the dynamics ofy @see Eq.~2!#. This
can be achieved using the functionf (xn ,y) of the following
form

f ~xn ,y!5H a/~12xn!1y, xn<0

a1y, 0,xn,a1y andxn21<0

21, xn>a1y or xn21.0.

An important feature of the model discussed here is t
one can use two inputs,bn and sn , to achieve the desired
response dynamics. Although these inputs are not dire
related to dynamics of specific ionic currents, they can
used to capture the collective dynamics of these curre
Selecting a proper balance between these inputs, one
model a large variety of the responses that are seen in di
ent neurons. Again, the simplicity of the model helps one
understand the dynamical properties of each input and se
proper balance between them.
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